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Numerical simulations of freely decaying isotropic fluid turbulence were per-
formed at various Mach numbers (from 0.2 to 1.0) using known shock-capturing
Euler schemes (Jameson, TVD-MUSCL, ENO) often employed for aeronautical ap-
plications. The objective of these calculations was to evaluate the relevance of the
use of such schemes in the large-eddy simulation (LES) context. The potential of the
monotone integrated large-eddy simulation (MILES) approach was investigated by
carrying out computations without viscous diffusion terms. Although some known
physical trends were respected, it is found that the small scales of the simulated flow
suffer from high numerical damping. In a quasi-incompressible case, this numerical
dissipation is tentatively interpreted in terms of turbulent dissipation, yielding the
evaluation of equivalent Taylor micro-scales. The Reynolds numbers based on these
are found between 30 and 40, depending on the scheme and resolution (up to 1283).
The numerical dissipation is also interpreted in terms of subgrid-scale dissipation in
a LES context, yielding equivalent Smagorinsky “constants” which do not level off
with time and which remain larger than the commonly accepted values of the classical
Smagorinsky constant. On the grounds of tests with either the Smagorinsky or a dy-
namic model, the addition of explicit subgrid-scale (SGS) models to shock-capturing
Euler codes is not recommended.c© 1999 Academic Press
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1. INTRODUCTION

At the present time, the need for unsteady fluid turbulent computations in the transonic
flow regime is clearly identified for future aeronautical applications, and the improvement
of computational resources opens the way to large-eddy simulation (LES). However, since
in the transonic Mach number regime the use of shock-capturing schemes is inevitable, the
influence of their intrinsic numerical dissipation on LES computations must be investigated.
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Such schemes will be considered as suitable for LES if they satisfy one of the following
conditions:

• their numerical dissipation is much lower than the physical subgrid-scale dissipation
(condition (C1))
• their numerical dissipation is able to mimic those of a subgrid-scale (SGS) model

(condition (C2)).

These conditions correspond to the two approaches found in the literature. On the one hand,
recently Ghosal [1] showed that the numerical errors of a centered scheme, even of eighth-
order accuracy, can hide the contribution of a subgrid-scale model if a prefiltering technique
is not applied. In the same way, Kravchenko and Moin [2] showed that, for turbulent channel
flow, the truncation errors of second-order finite-difference simulations can exceed the
magnitude of subgrid-scale terms. Moreover, for mixing-layer simulations with high-order
compact schemes lacking shock-capturing properties, Vremanet al. [3] found it necessary
to prefilter the resolved variables so that no energy is left at the mesh scale, in a consistent
way with the conclusions of [1].

On the other hand, intrinsically dissipative discontinuity-capturing Euler schemes repro-
duce some trends of turbulence: let us mention the results of Kawamura and Kuwahara
[4] in the incompressible regime and Porteret al. [5] in compressible cases. This ap-
proach is usually referred to as MILES (monotone integrated large-eddy simulation) and
has been introduced by Boriset al. [6], who claimed that the intrinsic dissipation of the
flux-corrected transport (FCT) algorithm can mimic the effects of a subgrid-scale model.
Some authors, like Furebyet al. [7] in the incompressible regime, also include the vis-
cous terms of the Navier–Stokes equations. In all cases, the relevance of this concept is
not fully established, and the motivation of the present paper is to provide additional in-
formation to clarify this point and to check if one of the two conditions (C1) or (C2) is
satisfied.

This paper is a follow-up of the work of Mossi [8], who challenged TVD-MUSCL and
Jameson schemes to reproduce the incompressible Taylor–Green vortex-decay problem
at finite Reynolds number, by comparisons with direct numerical simulations (DNS) of
Brachetet al. [9]. In the present study, we moved to compressible isotropic turbulence
at zero molecular viscosity, with a wider set of schemes, namely, the Jameson scheme, a
TVD-MUSCL scheme using the minmod limiter with two different compression factors,
and three schemes within the ENO family (ENO, WENO, MENO) (see Appendix A for a
brief description of these).

The paper is organized as follows. In Section 2, the results obtained with these schemes
at spatial resolutions 643 and 1283 in five test cases at different initial rms Mach numbers
(Mrms= 0.2, 0.5, and 1.0) and compressibility factors (χ0= 0 and 0.05; see Section 2 for def-
inition) are presented and compared. For the quasi-incompressible case (Mrms, χ0)= (0.2, 0)
the results are compared with spectral incompressible LES and DNS of M´etais and Lesieur
[10], Vincent and Meneguzzi [11], and She [12], so that equivalent Reynolds numbers
based on the Taylor micro-scale can be worked out for each scheme and resolution. In
Section 3, a more precise evaluation of the built-in dissipation of these schemes is pro-
posed in terms of the “generalized Smagorinsky constant.” The relevance of this concept
is checked by repeating certain simulations with two different subgrid-scale models (the
Smagorinsky and the dynamic eddy-viscosity models). The general conclusion is then given
in Section 4.
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2. THE MILES APPROACH

The Euler equations are solved in their conservative form

∂U
∂t
+ ∂F
∂x
+ ∂G
∂y
+ ∂H
∂z
= 0, (1)

wheret denotes time and(x, y, z) the 3D Cartesian coordinates. For an ideal gas of specific
heat ratioγ (γ = 1.4 here, as in air), the state vectorU and the convective fluxesF, G, and
H are defined as

U =


ρ

ρu
ρv

ρw

ρE

 , F =


ρu

ρu2+ p
ρuv
ρuw

u(ρE + p)

 , G =


ρv

ρuv

ρv2+ p
ρvw
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 , H =


ρw

ρuw
ρvw

ρw2+ p

w(ρE + p)

 ,
(2)

where(u, v, w)= u, ρ, p, andE are respectively the velocity vector, density, pressure, and
total specific energy,E = p/(ρ(γ − 1))+ 1

2u2. All initial conditions are at uniform density
ρ0 and temperatureT0, that we use to make the problem non-dimensional, together with the
rms of the initial random velocity field. Consequently, the initial rms Mach number (Mrms)
arises naturally in the equation of state:

p

ρ
= T

γM2
rms

. (3)

The time integration is performed with a Runge–Kutta multi-stage technique while the
convective fluxesF, G, H are discretized with some widely used shock-capturing schemes,
which are listed as follows and briefly presented in Appendix A:

• second-order accurate in space Jameson scheme using a four-stage Runge–Kutta
time marching technique;
• third-order accurate in space TVD-MUSCL scheme with the minmod limiter and

β = 1 (the minmod limiter and the compression factorβ are defined in Appendix A.2) using
a four-stage Runge–Kutta time marching technique, denoted MUSCL1;
• third-order accurate in space TVD-MUSCL scheme with the minmod limiter and

β = 4 using a four-stage Runge–Kutta time marching technique, denoted MUSCL4;
• third-order accurate in space ENO scheme using a three-stage Runge–Kutta TVD

time marching technique [13];
• fourth-order accurate in space WENO scheme using a three-stage Runge–Kutta

TVD time marching technique;
• fifth-order accurate in space MENO scheme using a three-stage Runge–Kutta TVD

time marching technique.

Each order of accuracy mentioned above corresponds to the maximal order that each scheme
is able to reach in the smooth regions of the flow. Among these six numerical schemes, the
Jameson scheme is the only one which allows direct control of the numerical dissipation
by means of an artificial dissipation model. Here, the scalar dissipation model proposed by
Jamesonet al. [33] has been employed. The two coefficients controlling the artificial dissi-
pationκ(2) andκ(4) (see Eq. (21)) can be chosen as a function of the spatial configuration and
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TABLE I

Key Parameters of the Different Cases

Case 1 Case 2 Case 3 Case 4 Case 5

Initial rms Mach number 0.2 0.5 0.5 1.0 1.0
Initial compressibility ratioχ0 0 0 0.05 0 0.05

of the physical problem. Actually, for industrial computations, the former varies typically
between 1.0 and 2.0, while the second is in the range of 0.01 and 0.05. In all simulations
presented here,κ(2) andκ(4) were set to 1.0 and 0.03, respectively. This choice is surely
neither the least dissipative one nor the best for the problem at hand, but it is widely used
for industrial flow calculations. A detailed analysis of the influence ofκ(2) andκ(4) with
several artificial dissipation models can be found in [8].

All simulations are performed in a cube of edge length 2π , containing either 643 or
1283 uniformly distributed grid points. The boundary conditions are periodic in the three
directions. Helmholtz decomposition of the velocity vector can be performed efficiently in
the spectral space. The compressible part of the velocityuk is defined and computed as
uc

k = [k · uk ]k/k2, and the solenoidal part asus
k = uk − uc

k . The corresponding spectra are

E(k) = 1

2

∑
k−1/2<|k|≤k+1/2

|uk |2; Ec(k) = 1

2

∑
k−1/2<|k|≤k+1/2

∣∣uc
k

∣∣2, (4)

and their corresponding energies are

E =
∫ ∞

0
E(k) dk; Ec =

∫ ∞
0

Ec(k) dk. (5)

The compressibility ratioχ is then defined asχ =Ec/E. Its initial valueχ0 is of importance,
as stressed in particular by Passot and Pouquet [14], Blaisdellet al. [15], and Erlebacher
et al. [16].

In all the cases considered here, which are summarized in Table I, the initial velocity
fields have power-law spectra∼k4e−2(k2/k2

0) with k0= 2. All simulations have been carried
out up tot = 10, which corresponds to 10/π ≈ 3 initial eddy-turnover times.

2.1. The Shock-Free Almost Incompressible Case

Case 1 does not develop strong compressibility effects (for all schemes,χ remains less
than 0.01). It is therefore relevant to compare our results with the numerous studies of freely
decaying incompressible isotropic turbulence computations, in addition to the low-Mach-
number results of Erlebacheret al. [16]. Because the effective filter (both transfer function
and cut-off length scale) associated to MILES calculations remains unknown, results will
be compared directly with unfiltered DNS results.

The first aspect to be checked is the ability of the dissipative Euler schemes under investi-
gation to recover proper Navier–Stokes dynamics (instead of the equipartition-type solutions
produced by certain academic and even industrial codes). As explained in the monograph
by Lesieur [17], the evolution at large (but finite) Reynolds numbers of freely decaying in-
compressible isotropic turbulence decay follows essentially two distinct stages. During the
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FIG. 1. Time history of enstrophy for test Case 1 (643 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –;MUSCL1 -··-··-.

first stage, the viscous effects are negligible, the flow develops strongly anisotropic events
(sheets rolling-up into worm-like vortices), and enstrophy increases dramatically due to
vortex stretching. During the second stage, viscous diffusion plays an important role in the
dynamics and distorted dissipative structures are created; moreover, the enstrophy

Ä = 1

2
〈ω2〉 = 1

2
〈|∇ × u|2〉 (6)

reaches a maximum and decays. All statistics then become self-similar. In Eq. (6), the
brackets〈·〉 denote the statistical average on all mesh points.

The two stages can be recognized in Figs. 1 and 2, which show the time evolution of
enstrophy for the 643 grid and the 1283 grid, respectively. Fromt = 0 to about 3, enstrophy
grows and small structures are generated; then, the numerical damping, which becomes
strong for small scales, leads to a decrease of enstrophy. Comparing these figures with the
one sketched by Lesieur [17, Fig. VI-5, p. 153], one could note that the global evolution of
the enstrophy is in agreement with the EDQNM (eddy-damped quasi-normal Markovian
approximation) predictions, which has also been confirmed by the previous tests on the
Taylor–Green problem [8]. The enstrophy level increases with the resolution in the same
way as it would increase with the Reynolds number in Navier–Stokes computations (up to
scaling exponents that will be considered later).

The EDQNM theory predicts that, at zero molecular viscosity, enstrophy blow-up occurs
at the critical timetc∼ 5.9/Ä(0)1/2. At finite Reynolds number, enstrophy no longer blows
up, but exhibits a peak abouttc, that would correspond tot = 3.7 here. More precisely, DNS
results (see in particular Ref. [9] with Taylor–Green initial conditions) show that the peak
time decreases continuously when molecular viscosity increases, which can be used as an
indirect measure of an equivalent Reynolds number in our case. We are of course aware of
the fact that such equivalent Reynolds numbers are resolution dependent.

Figures 1 and 2 show that the peak time ranges from 2.5 for the MUSCL1 scheme with the
643 grid to 4.0 for the MENO scheme with the 1283 grid. On the coarse grid, the enstrophy
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FIG. 2. Time history of enstrophy for test Case 1 (1283 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –.

of the MUSCL4 scheme begins to be larger than the one of the WENO scheme soon after
the enstrophy peak. This suggests that the WENO scheme is more diffusive at small scales
than the MUSCL4 one; whereas, when the spectrum is not completely filled, the WENO
scheme is less diffusive than the MUSCL4 one. Since the differences between the schemes
begin to be noticeable aftert = 1, i.e., well beforetc, we suspect that numerical dissipation
affects not only the small scales but also the large ones. The MENO scheme preserves the
largest amount of enstrophy until the end of the simulation. This suggests that it is the least
dissipative of all, which will be confirmed further on. After the MENO scheme, the order
in terms of increasing dissipation is as follows: WENO, MUSCL4, Jameson, ENO, and
MUSCL1. The latter scheme was found too dissipative at 643 to justify further testing (see
Fig. 1). It was checked that the use of the smoothness indicator of the WENO scheme given
in [18] produces the same results with a 3% relative error on enstrophy with respect to the
one of [19] used in this study.

The time history of the total kinetic energy, presented in Figs. 3 and 4 for both grids, shows
that numerical diffusion acts earlier than the above enstrophy peak time, more visibly on the
coarse grid, of course. Att = 10, the rank between the schemes is identical for both grids.
The Jameson scheme preserves the largest amount of energy, followed by the MUSCL4,
MENO, WENO, ENO, and MUSCL1 schemes. For the latter, the energy begins its decay
sooner than the others, which is, again, evidence that the large scales of the flow suffer
from numerical diffusion. The time history of the energy decay shows that, until at least
t = 3, the MENO scheme contains more energy than the other schemes. The kinetic energy
is found to decrease ast−α with α ranging from 1.3 (MUSCL1) to 1.67 (MUSCL4) on the
coarse grid and from 1.94 (ENO) to 2.18 (MUSCL4) on the fine grid. For the latter grid,
decay rates are greater than the values of 1.38 predicted by EDQNM and of 1.6 found in
spectral DNS [10]. Note that a ENO scheme on a 323 grid gives a slope of 1.2. Here, the
trend is an increase ofα when increasing the resolution. An explanation for this behavior
is that the wave number range to dissipate energy is broader in the 1283 computation than
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FIG. 3. Time history of energy decay for test Case 1 (643 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –;MUSCL1 -··-··-.

in 643 computations (this assumption will be discussed later on with the help of other
statistics).

Another test of validity of the MILES approach is the analysis of the schemes ability
to producek−5/3 spectral sub-ranges in the self-similar decay stage. Looking at the ki-
netic energy spectrum of Fig. 5 for the 643 grid a t = 10, no such sub-ranges are clearly
distinguishable. We will see in Section 3 that clearerk−5/3 sub-ranges are obtained at the

FIG. 4. Time history of energy decay for test Case 1 (1283 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –.
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FIG. 5. Kinetic energy spectrum for test Case 1 att = 10 (643 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –;MUSCL1 -··-··-.

same resolution with a fourth-order Euler centered scheme coupled to a Smagorinsky SGS
model.

A quite surprising behaviour is observed for the Jameson scheme, which does not leave
any energy at the cut-off wave number (kc= N/2, with N= 64 or 128): for both grids (see
Figs. 5 and 6), the spectra obtained with this scheme resemble more low-Reynolds-number
DNS spectra (with a Kolmogorov wavenumberkd≈ 18 at 1283) than high-Reynolds-number
LES spectra. This behaviour depends on the artificial dissipation: indeed, with the less often

FIG. 6. Kinetic energy spectrum for test Case 1 att = 10 (1283 grid). ENO ———; WENO -----; MENO
-·-·-·-·-; Jameson· · ·; MUSCL4– – – – –.
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used Jameson coefficientsκ(2)= 1.0 andκ(4)= 0.01, results close to MUSCL4 ones are
obtained, while even better results can be produced with matrix artificial dissipation models
(see [8]). Nevertheless, the Jameson scheme better preserves energy in the large scales. This
is quite understandable if one accepts the above analogy: in this case, the pseudo dissipative
range aboutkd would inhibit all transfers acrosskc, yielding less energy dissipation in the
large scales than with the other schemes. As a result, the total kinetic energy (the integral of
the spectrum) is larger with the Jameson scheme than with the other ones, as stated above.
On the 1283 grid (see Fig. 6), all the other schemes exhibit a very shortk−5/3 sub-range,
between the wave numbers 5 and 15. But, transfers should be examined in order to prove that
inertial behaviour can be reproduced with the MILES approach. Whatever the conclusion of
such investigation, the condition (C2) is not verified since classical LES is able to produce
an inertial range up to the cut-off. Concerning the numerical scheme, one can notice that
the MENO scheme yields more energy than the other ones at high wave numbers.

In DNS, the isotropic Taylor micro-scaleλ (see Figs. 7 and 8), defined as in Jim´enez
et al. [20] by

λ2 = 5
∫∞

0 E(k) dk∫∞
0 k2E(k) dk

= 5E
Ä
, (7)

is consistent with the classical definition ofλ (see, e.g., Hinze [21]), which is one-dimensional
and, in some sense, characteristic of the velocity gradients in the inertial range, when there
is one. In Porteret al.[5], the same formula (up to the factor 5) was used as a measure of the
resolved gradients in shock-capturing Euler simulation in the same spirit as the present ones,
although one might object that the certainly crucial contribution of the subgrid-scales is not
taken into account in this case. Note that the same problem arises in any LES, where the use
of Eq. (7) has nevertheless become customary. As in the MILES results of Porteret al.[22, 5]
and the LES/DNS simulations of Erlebacheret al.[16],λ keeps on increasing at large times,

FIG. 7. Time history of Taylor micro-scale for Case 1 (643 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –;MUSCL1 -··-··-.
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FIG. 8. Time history of Taylor micro-scale for Case 1 (1283 grid). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –.

which is the expected behaviour. Furthermore, when the mesh size is reduced by half,λ

is divided by a factor of about 1.6 for all the schemes, suggesting that it scales inN−2/3

as expected from Kolmogorov’s law. The main goal of this paper being the comparative
assessment of the different schemes, the respective values ofλ at t = 10 are summarized
in Table II for both grids. On these grounds, MENO provides better results than MUSCL4,
WENO, Jameson, ENO, and MUSCL1. Note that the Taylor micro-scale increases with the
resolution. Moreover a 323 computation with an ENO scheme gives a value of 41 for the
Taylor micro-scale. This confirms that a higher resolution allows the numerical schemes
to dissipate on a broader wave number range. Although this result seems to be counter-
intuitive with respect to truncation analysis, it should be stressed that the finest grid used in
our numerical computations is still far from the situation where the asymptotic behaviour
for mesh size going to zero is expected.

Another way to investigate how realistic these inviscid simulations are is to look at the
resolved skewness tensor

Ski j =
〈(

∂ui

∂xj

)3
〉/〈(

∂ui

∂xj

)2
〉 3

2

, 1≤ i, j ≤ 3, (8)

wherei and j refer to theR3 directions, as will be the case in the sequel of this paper.

TABLE II

Pseudo Taylor Micro-scale Values for All Schemes

and Both Grids (Case 1,t = 10,∆ = 2π/N)

ENO WENO MENO Jameson MUSCL4 MUSCL1

643 5.81 5.01 4.31 5.41 4.71 7.41
1283 6.81 5.91 5.11 6.21 5.51
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TABLE III

The Average of the Diagonal Components of the Resolved

Skewness Tensor att = 10 for Case 1

ENO WENO MENO Jameson MUSCL4

643 −0.32 −0.32 −0.33 −0.45 −0.36
1283 −0.37 −0.36 −0.35 −0.46 −0.34

The typical values for the diagonal components of the “true” skewness tensor reach−0.4
in experimental grid turbulence [23] and−0.5 in the incompressible DNS of Vincent and
Meneguzzi [11], which agrees with the 963 grid points compressible DNS of Erlebacheret al.
[16]. Initially, the skewness is close to zero, due to the Gaussian (random) initialization.
A minimal requirement for the MILES approach would be a resolved skewness which
becomes and remains negative. The averages of the diagonal components 1/3 Tr(Sk) are
given in Table III att = 10 for the two grids. All the schemes tested are able to develop a
non-Gaussian behaviour but the values are relatively far from the aforementioned spectral or
experimental calculations. These schemes introduce more numerical errors than the spectral
ones usually used in theoretical turbulence studies. The results are close to the value of−0.3
found by Vremanet al. [24] in 213 LES computations of decaying isotropic turbulence at
Mrms= 0.05. Inspecting Table III one may notice that, except for the MUSCL4 scheme, the
absolute value of the diagonal part of the skewness tensor increases with the resolution. The
Jameson scheme is closer to the accepted value of−0.5 than the other ones, which confirms
that its behaviour (with the standard set of coefficients) is closer to a low-Reynolds-number
DNS than a high-Reynolds number LES.

Another minimal requirement for the schemes investigated here is to reproduce the basic
mechanisms of turbulence like vortex stretching and the subsequent vortex tubes called
“worms,” discovered numerically by She (see in particular Ref. [12]; the discovery of the
sheets from which they result is due to [11]). Figures 9 and 10 show iso-surfaces of constant
vorticity magnitude att = 10 for all the schemes on the 1283 and 643 grids, respectively.
The value of the iso-surfaces is chosen to be a proportion of the rms vorticity〈ω2〉1/2. For
the 1283 grid, the threshold value ˇω is fixed so that ˇω= 2.27〈ω2〉1/2, while for the 643 grid
ω̌ is only 2〈ω2〉1/2. It is remarkable that for all schemes this choice produces the best visual
impression, i.e., a compromise between the largest number of worms and the sharpness
of the visualizations. These schemes are seen to produce elongated vorticity structures as
found in spectral DNS simulations. The worm diameter is a direct function of the resolution
and is about 51 for the Jameson scheme and 31 for the others.

Quantitative comparisons att = 10 are shown in Fig. 11, where the probability density
functions (pdfs) of velocity derivatives and pressure are plotted. Our data are compared with
the data obtained by the incompressible DNS spectral computations by M´etais and Lesieur
[10], Vincent and Meneguzzi [11], and She [12]. The pdfs of∂u/∂x and∂u/∂y exhibit a
non-Gaussian behaviour as expected from the results of the aforementioned authors. Our
results are closest to those of M´etais and Lesieur atReλ≈ 20 and of She atReλ≈ 24.
In contrast, the pdfs of Vincent and Meneguzzi atReλ≈ 150 show larger tails than those
provided by the shock-capturing schemes.

Since in incompressible flows, the low pressure levels are well correlated with intense
vorticity, the pressure pdfs are strongly skewed toward the low values, as shown by M´etais
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FIG. 9. Iso-surfaces of constant vorticity magnitude att = 10 for all schemes in the 1283 grid, Case 1. ENO,
top left; WENO, top right; MENO, middle left; Jameson, middle right; MUSCL4, bottom left.

and Lesieur [10], who found exponential distributions for the negative pressure fluctuations.
Looking at Fig. 11, one can observe that the shock-capturing schemes tested here are
unable to reproduce the exponential “wings,” and rather exhibit a Gaussian behaviour.
A visualization of low pressure field of the WENO scheme on the 1283 grid (the other
schemes have the same behaviour) shows that pressure evolution is decorrelated from that
of the vortices (See Fig. 12). This conclusion was checked to be independent of the selected
pressure level. It may be added that the velocity pdfs have been found to be very closely
Gaussian for all schemes, as expected (see, e.g., [10]).

The general conclusion of this section is that the condition (C2) is not satisfied since the
statistics dependent on the small scales are very much influenced by the numerical damping.
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FIG. 10. Iso-surfaces of constant vorticity magnitude att = 10 for all schemes in the 643 grid, Case 1. ENO,
top left; WENO, top right; MENO, middle left; Jameson, middle right; MUSCL4, bottom left.

Moreover, the pdfs of the velocity derivatives exhibit a behaviour similar to a low Reynolds
number DNS whereas the goal of the MILES approach is to emulate a LES result. Moreover,
the pressure pdfs are seen to be essentially Gaussian.

Nevertheless, some global features of the turbulence are recovered and if one only needs
a good representation of the large scales behaviour of the flow in turbulent applications,
computations with the ENO, WENO, MUSCL4, and MENO schemes may be considered.
The Jameson scheme exhibits very strong numerical damping at small scales with the set
of artificial dissipation coefficients commonly used for transonic industrial applications.
However, it was found that for lower coefficients the small scale behaviour was similar to
that of the other schemes.
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FIG. 11. Probability density functionsP(X) at t = 10 for Case 1.X= ∂u/∂x− 643, top left; X=
∂u/∂x− 1283, top right; X= ∂u/∂y− 643, middle left; X= ∂u/∂y− 1283, middle right; X= pressure− 643,
bottom left; X= pressure− 1283, bottom right. ENO ———; WENO -----; MENO -·-·-·-·-; Jameson· · ·;
MUSCL4– – – – –. Métais and Lesieur [10] (Reλ≈ 20) e; She [12] (Reλ≈ 24) ■; She [12] (Reλ≈ 77)4;
Vincent and Meneguzzi [11] (Reλ≈ 150)s.

The compression factor in the minmod limiter of the MUSCL scheme should be tuned to
4 to reduce numerical dissipation. This provides better results with more energy in all the
wave lengths. The robustness of the MUSCL4 scheme is sufficient for all the cases tested
in this study.

The quasi-equivalence between the results obtained by MUSCL4, WENO, or MENO,
despite their different formal order of spatial accuracy, suggests that the use of a large moving
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FIG. 12. Iso-surfaces of pressure for the WENO scheme att = 10 (Case 1, 1283 grid).

stencil in ENO schemes is not optimal for the simulation of highly turbulent flows. Looking
at the small scale dissipation of these schemes, one can legitimately ask the question of the
relative influence of the numerical dissipation with respect to a subgrid-scale model and
one may suspect that the condition (C1) is not respected too.

2.2. The Sonic Compressible Case

Case 5 (see Table I) is close to the one simulated with the piecewise parabolic method
(PPM) Euler scheme by Porteret al. [5]. In their MILES calculations, performed with
Mrms= 1.0 andχ0= 0.068 at high resolution (5123 grid points), they distinguished three
temporal phases: the “onset phase,” with the formation of shocks at its end, ranging from
t = 0 to 0.95 (the results of Porteret al.are given in our time units multiplying byπ their time
scale); the supersonic phase with the development of strong density contrasts(ρmax/ρmin)

with 0.95< t ≤ 6.6; and a post-supersonic phase dominated by vortex interaction and vor-
tical decay fort > 6.6. These phases can be recognized in Fig. 13, where the time evolution
of the density contrast is plotted for the MUSCL4 scheme on the finer mesh (the other
schemes have the same behaviour).

The first phase spreads over the time interval 0< t < 1.0; the second, including shocks
interaction, expands in the time interval 1.0< t < 7.3; and the last, where the density contrast
mean slope is low, occurs fort > 7.3. These values are close to those found by Porteret al.
and the physical trends are reproduced.

The time history of the energy decay is presented in Fig. 14 for the schemes considered
here on the 1283 grid and for the PPM computation of Porteret al. During the first phase
(t < 1), there is close agreement between the different schemes. In the second phase, the
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FIG. 13. Time history of density contrast for the MUSCL4 scheme (Case 5, 1283 grid).

PPM scheme preserves more energy than the other schemes, but during the third phase the
energy level is equivalent and the decay rates are very close.

Porteret al.explain that the time for compressional modes to develop fully is considerably
shorter than the time for solenoidal modes to develop through the energy cascade. The
spectrum of compressional energy is saturated att = 1 when the shocks start to form. The
time for solenoidal modes to develop is slower because it is linked with the eddy rotation
time of the energy containing scales. Looking at Fig. 15, which shows the solenoidal and the

FIG. 14. Time history of energy decay for the tested schemes compared with the PPM scheme of Porteret al.
(Case 5, 1283 grid). ENO ———; WENO -----; PPMe; Jameson· · ·; MUSCL4– – – – –.
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FIG. 15. Comparison between compressibleEc(k) ----- and solenoidalEs(k)——— kinetic energy spectra at
t = 1 (Case 5, MUSCL4 scheme on 1283 grid).

compressible spectra att = 1 for the MUSCL4 scheme on the 1283 grid, one can observe,
as these authors did, that the compressible modes contain more energy than the solenoidal
ones for high wave numbers (here fork> 15).

During the supersonic phase, compressional modes establish ak−2 velocity power spec-
trum as mentioned by Porteret al. The kinetic energy spectra at timet = 5 are given in
Fig. 16 on the 1283 mesh. All the simulations establish ak−2 slope between the modes 5
and 15. The first scheme which diverges from thek−2 slope is the ENO one.

FIG. 16. Compressible kinetic energy spectrum att = 5 for Case 5, ak−2 slope is also represented (1283 grid).
ENO ———; WENO -----; Jameson· · ·; MUSCL4– – – – –.
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Finally, it was observed that some of the computations became unstable on the finest
mesh. This concerned the WENO scheme for test Case 4 and the MENO scheme for test
Cases 4 and 5. In these cases, the local Mach number became as high as 3. Moreover, these
schemes were likely to encounter difficulties in selecting a smooth stencil, probably when
some strong gradients are present on all the possible stencils.

2.3. Influence of the Mach Number and of the Compressibility

The time evolution of the parameterχ for the five test cases is plotted in Fig. 17 for
the ENO scheme on the finest mesh. Cases 3, 4, and 5 possess about 10% of compressible
energy att = 10. One can observe that, despite the incompressible initialization of Case 4,
the value ofχ is of the same order as for Case 5 just after 0.4 time units. For the shock-free
case,χ is lower than 0.01 but, as in Case 2, this value seems to increase. Zanget al. [25]
have mentioned thatχ slightly increases whenχ0 is less than 0.5.

In Fig. 18, which shows the time history of the rms densityρrms for the five test cases,
the density fluctuations are directly correlated with the initial Mach number as was also
shown in [25]: the rms density increases with the Mach number. Comparing the initially
incompressible cases with the ones containing compressible modes, one can notice that a
non-zero value ofχ0 involves a higher value ofρrms than the one obtained withχ0= 0. It is
shown in Fig. 19 that the density contrast can be higher in Case 4 than in Case 5. It may be
more physical to initialize the flow with a non-zero value ofχ0 when the rms Mach number
is set to 1. However, this observation is not valid for Cases 2 and 3.

For the next comparison, the result of Case 5 could be easily extended to Case 4. As
expected, the results of theMrms= 0.5 cases stand between Cases 1 and 5 though the
dynamics of these flows seem to be mostly incompressible.

FIG. 17. Time history ofχ for the ENO scheme (1283 grid). Case 1 ———; Case 2 -----; Case 3 -·-·-·-·-;
Case 4· · ·; Case 5 – – – – –.
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FIG. 18. Time history ofρrms for the ENO scheme (1283 grid). Case 1 ———; Case 2 -----; Case 3 -·-·-·-·-;
Case 4· · ·; Case 5 – – – – –.

3. EVALUATION OF THE BUILT-IN DISSIPATION

3.1. Measurement of the Numerical Diffusion

In the previous section, we showed that the nature of the schemes and their respective
accuracies deeply affect the solutions. In particular, we recall that the Jameson scheme

FIG. 19. Time history of density contrast for the ENO scheme (1283 grid). Case 1 ———; Case 2 -----;
Case 3 -·-·-·-·-; Case 4· · ·; Case 5 – – – – –.
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(with the standard coefficients) yields low-Reynolds-number-type behaviour, whereas the
dissipation of the others (except MUSCL1) rather acts as a SGS model. To be more precise,
a measurement of the numerical diffusion has to be defined.

One way to measure the numerical diffusion is to compare the MILES results with
theoretical results or with results from direct numerical simulation, as it was done by Mossi
[8] for the Taylor–Green vortex-decay problem.

In [8], the dynamics of the viscous Taylor–Green flow was investigated with the Jameson
and the MUSCL4 schemes on 643 and 1283 grid point meshes without any molecular or SGS
diffusion. The results were then compared with the viscous ones obtained by Brachetet al.
[9] who used a full spectral DNS on a 2563 grid. The inviscid MUSCL4 results on the 1283

grid and those computed with the Jameson scheme on the 643 grid are in good agreement
with those by Brachetet al.at respectivelyRe= 800 andRe= 200. The numerical diffusion
is then easily quantified in terms of an effective Reynolds number equivalent to the diffusion
of the scheme.

In the same way, the comparison of velocity-gradients pdfs done in the previous section
can give, via a Reynolds numberReλ based on the Taylor micro-scale, an estimate of the
importance of the numerical diffusion.

These methods provide only a global value of the numerical diffusion. However, to
compare the numerical diffusion with the SGS one, a local measurement of the former is
needed. The numerical diffusionεnum, which is strongly linked to the leading terms of the
truncation errors, is interpreted as the difference between the convection terms in momentum
equation given by the shock-capturing (sc) schemes and the ones given by a reference (ref)
centered scheme on the same flow field. These two terms are generated by taking a norm of
the respectively discretized convective fluxesFsc

i j andF ref
i j where, in the continuous case,

they are expressed as

Fi j = ρui u j + δi j p.

The centered reference fluxF ref
i j is chosen in such a way that(F ref

i j |l+1/2−F ref
i j |l−1/2)/1

is one order more accurate than(Fsc
i j |l+1/2−Fsc

i j |l−1/2)/1, whereF ref
i j |l+1/2 andFsc

i j |l+1/2

denote the fluxes evaluated at the right interface of thel cell. Giving εnum the form of an
energy dissipation rate, we define

εnum=
〈

ui
∂

∂xj

(
Fsc

i j − F ref
i j

)〉
, (9)

where the Einstein summation convention applies to repeated indices as in the sequel of
this paper. In the finite volume approach, the application of the Gauss theorem allows us to
compute directly the divergence of the convective fluxes. Therefore, Eq. (9) becomes

εnum=
〈

1

V
ui
(
Qsc

i − Qref
i

)〉
, (10)

whereQsc
i =V(∂/∂xj )Fsc

i j andV is the cell volume; for example,Qsc
i is given by Eqs. (22)

and (23) for the MUSCL scheme. For the Jameson scheme, the difference of the two
convective fluxes is reduced to the artificial dissipationD, as described in Eq. (19), namely

εnum=
〈

1

V
ui Di

〉
. (11)
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TABLE IV

Reλ Values att = 10 for Case 1

ENO WENO MENO Jameson MUSCL4

643 27.4 30.6 33.5 30.9 31.6
1283 35.7 41.3 46.1 37.0 40.2

Now that a measure of the numerical diffusion is defined, it is possible to build an equivalent
Reynolds number based upon the pseudo Taylor micro-scaleλ introduced in Subsection 2.1,

Reλ = 15〈ρ〉(2/3 E)3/2

εnumλ
. (12)

The values ofReλ for Case 1 are summarized in Table IV for both grids att = 10.
As expected,Reλ increases with the resolution. As we already mentioned when looking at

the velocity derivatives pdfs, theReλ was estimated to be about 25. It is then remarkable that
this estimate is of the same order as the one computed with our measurement of numerical
diffusion.

3.2. Spectral Distribution of the Numerical Errors

The numerical dissipationεnum measures a norm of the numerical error, but it does not
provide any information about the spectral distribution of this error. To get this information,
the modulus of the transfer functionTm(k) for the convective fluxesFm, Gm, and Hm is
computed for each shock-capturing scheme as

Tm(k) =
(1/2)

∑
k−1/2<|k|≤k+1/2

∣∣FFT
(
∂Fsc

m /∂x + ∂Gsc
m/∂y+ ∂Hsc

m /∂z
)∣∣2

(1/2)
∑

k−1/2<|k|≤k+1/2 |ik1 FFT(Fm)+ ik2 FFT(Gm)+ ik3 FFT(Hm)|2 , (13)

where FFT(· ) denotes the fast Fourier transform and 1≤m≤ 5. Thetransfer functionTm(k)
corresponds to the ratio between the Fourier transform of the divergence of the convective
fluxes computed with the shock-capturing schemesFsc

m , Gsc
m, and Hsc

m , and the Fourier
spectral divergence of the fluxes constructed with the state vectorU, as defined in Eq. (2).
The modulus of the transfer function is computed here instead of the usual transfer function
because our interest focuses only on the dissipative behaviour of the schemes and not on
the dispersive errors.

The modulus of the transfer functionT2(k), corresponding to the componentU2= ρu, is
given in Fig. 20 for the Case 1 on the 1283 grid at t = 10. Results forT3(k) andT4(k) (not
shown here) are very close to the previous ones because of the isotropy of the flow. Obvi-
ously, numerical damping leads to a decrease ofTm(k). Cut-off wave numbers, defined here
as the smallest wave number for whichTm(k)≤ 0.9, could be deduced from Fig. 20. These
wave numbers are evaluated to be about 27 for the MENO and WENO schemes, 18 for the
ENO and MUSCL4 schemes, and 14 for the Jameson one. Unfortunately, forT1(k), cut-off
wave numbers are found at lower values than forT2(k), as shown in Fig. 21. The cut-off
wave number of the MENO scheme remains around 27, but the one of the Jameson scheme
decreases to about 7. This demonstrates that a unique cut-off wave number cannot be defined
for a given shock-capturing scheme when dealing with a non-linear system of conservation
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FIG. 20. Transfer functionT2(k) (Case 1, 1283 grid, t = 10). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –.

laws. As a consequence it is impossible to define a unique filter length for a MILES computa-
tion on the contrary of a classical LES, which does not satisfy the condition (C2). Moreover,
the decay slopes ofT1(k) are much larger than the ones ofT2(k), whatever the scheme. Next,
one notices the surprising behaviour of the WENO scheme which exhibits forT1(k) values
slightly larger than one between wave numbers 11 and 21. Finally, for all schemes it is
observed that the evolution ofT5(k) (not shown here) is close to the one ofT1(k).

FIG. 21. Transfer functionT1(k) (Case 1, 1283 grid, t = 10). ENO ———; WENO -----; MENO -·-·-·-·-;
Jameson· · ·; MUSCL4– – – – –.
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From this spectral analysis, the ranking between the schemes is consistent with the results
previously observed in the kinetic energy spectra (Fig. 6) except for the ENO scheme which
exhibits better results than the MUSCL4 scheme. However, despite the same order of
accuracy of both schemes, this contrast may be explained by the inconvenient use of the
slope limiter by the MUSCL4 scheme, even at low local Mach number.

For all schemes, we observe that the modulus of the transfer functions is smaller than
one-third for high wave numbers, leading to a non-physical behaviour of these modes.

3.3. Generalized Smagorinsky Constant

From a LES point of view, the numerical diffusion is supposed to be quantified with
respect to the SGS one. In this way, the concept of a “generalized Smagorinsky constant”
is introduced. The subgrid energy dissipation rate is defined as

εsgs= 〈ρui ∂ j τi j (u)〉, (14)

whereτi j is the subgrid-scale stress tensor expressed in Eq. (40). Here, it is evaluated by
means of the Smagorinsky eddy-viscosity model [26] deprived of its constant,

τi j (u) = νsgsSi j (u), (15)

with

νsgs= 12|S(u)| and |S(u)|2 = 2Si j (u)Si j (u), (16)

whereSi j (u)= 1
2(∂ j ui + ∂i u j ) and, following Deardorff [27],1 is related to the mesh size.

The strain rate tensorSi j (u) is discretized by means of a second-order centered approxima-
tion, which is quite acceptable in the absence of sharp gradients (from now on, only Case 1
is considered).

The “generalized Smagorinsky constant” (hereafter calledCgs) is defined as

Cgs=
√
εnum/εsgs. (17)

It corresponds to the value that would take the Smagorinsky constant if the role of SGS
diffusion were played by the numerical damping. For example, a value ofCgs equal to the
classical Smagorinsky constant (Cs) means that the numerical diffusion of the scheme has
the same intensity as that of the Smagorinsky SGS model. Note that the theoretical value
of Cs for freely decaying turbulence is 0.18 [28], but Deardorff [29] proposed to use 0.2. In
Figs. 22 and 23, the time evolution ofCgs is given for Case 1. First, a transient phase can be
distinguished associated to a fast increase ofCgs. This growth of the numerical dissipation is
induced by the filling of high frequency modes due to the non-linear energy cascade process.
Bothεnum andεsgsfollow an enstrophy-like evolution. But at the initial time,εnum is clearly
weaker thanεsgs because the flow only contains large structures which are not effected by
the numerical damping whereas the existing gradients impose a non-zero SGS dissipation.
Up to aboutt = 2, Cgs increases quickly (with the filling of the energy spectrum) and later,
the ratioεnum/εsgs takes a smaller slope. The asymptotic state corresponds to a situation
where the decay rate ofεsgs is faster than the one ofεnum. The expected self-similar regime
is therefore never really reached with the schemes under investigation. Nevertheless, this
does not affect the relevance ofCgs, which remains much larger thanCs. Therefore we
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FIG. 22. Time history ofCgs (Case 1, 643 grid). ENO ———; WENO -----; MENO -·-·-·-·-; Jameson· · ·;
MUSCL4– – – – –;MUSCL1 -··-··-.

can conclude that all schemes considered overdissipate with respect to the Smagorinsky
model, with a ratio between 2.5 and 9 times, depending on the schemes. This does not
seem to depend much on resolution. More precisely,Cgs is slightly larger with the 1283

grid than with the 643 one. Moreover, the value ofCs is reached a long time before the
enstrophy peak for all schemes. Nevertheless, one can notice that the fifth-order accurate
MENO scheme is the least dissipative scheme tested in this study. It is followed, ordered by
increasing dissipation, by the MUSCL4, WENO, Jameson, ENO, and MUSCL1 schemes.

FIG. 23. Time history ofCgs (Case 1, 1283 grid). ENO ———; WENO -----; MENO -·-·-·-·-; Jameson· · ·;
MUSCL4– – – – –.
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The third-order MUSCL1 scheme is much more dissipative than the others, as is shown in
Fig. 22.

From these results, it appears that the condition (C1) is not fulfilled sinceεnum>εsgs. It
then can be assumed that the numerical diffusion would mask the effect of the subgrid-scale
model in computations where the shock-capturing schemes are coupled with SGS models.

3.4. Computations with Subgrid Models

Several computations of the shock-capturing schemes coupled with two different SGS
models have been carried out for the shock-free Case 1. The SGS models used in this study
are the Smagorinsky and the dynamic eddy-viscosity models, which are both presented in
Appendix B.

To compare the MILES concept with classical LES computations, the SGS models are
coupled with a fourth-order accurate centered spatial scheme. The spatial scheme is a
discretized form of a skew-symmetric formulation of the convection terms, chosen to reduce
the aliasing errors, as proven by Blaisdellet al. [30]. The three-stage Runge–Kutta TVD
scheme is then applied to perform the time integration. This analysis is restricted to Case 1
because SGS models alone are devoid of the shock-capturing ability. The skew-symmetric
centered scheme plus the Smagorinsky SGS model is called the S4-SMA scheme and
the skew-symmetric centered scheme plus the dynamic eddy-viscosity model is called the
S4-DYN scheme.

The kinetic energy spectra of the MENO, S4-SMA, and S4-DYN schemes are represented
at t = 10 in Fig. 24 for the 643 grid. As expected, the S4-SMA scheme (withCs= 0.2)
achieves a−5/3 slope, whereas the S4-DYN scheme provides a slope slightly smaller than
the theoretical one. The square root of the dynamic constant takes the asymptotic value of
0.177 as can be observed in Fig. 25 which shows the time history ofC1/2

d on the 643 grid.
This value is very close to the theoretical value of 0.18. On the contrary, the behaviour for the
small scales of the least dissipative shock-capturing scheme tested here (MENO) is far from

FIG. 24. Kinetic energy spectrum att = 10 (Case 1, 643 grid). MENO ———; S4-SMA -----; S4-DYN -·-·-·-·-.
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FIG. 25. Time history of square root of the dynamic constant for the S4-DYN scheme (Case 1, 643 grid).

being an efficient subgrid model. In the same way, the time history of enstrophy for these
three simulations is represented in Fig. 26. The enstrophy level is about one-half times lower
for the MENO scheme than for the S4-DYN one. As it appears from Fig. 24, the dynamic
eddy-viscosity model is less dissipative than the Smagorinsky at small scales. The Taylor
micro-scale values are equal to 3.51 on the 643 grid for the schemes S4-SMA and S4-DYN
at the end of the simulation. These values can be compared with the value of 4.31 obtained
with the MENO scheme on the same grid (see Table II). The conclusion of the comparison
between MILES and conventional LES computations is not in favour of the MILES concept.

FIG. 26. Time history of enstrophy for the schemes MENO, S4-SMA, S4-DYN (Case 1, 643 grid).
MENO ———; S4-SMA -----; S4-DYN -·-·-·-·-.
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FIG. 27. Time history of energy decay (Case 1, 1283 grid). MUSCL4 ———; MUSCL4+ Smagorinsky -----;
MUSCL4+ dynamic model -·-·-·-·-.

To analyse the effects of a SGS model, the time evolution of the total energy for the
MUSCL4 scheme with and without SGS model on the 1283 grid is shown in Fig. 27. For
t > 7, the energy level of shock-capturing schemes becomes higher with subgrid model than
without. Note that the observations are the same whatever the mesh or the scheme used.

Figure 28 shows the time history of enstrophy on the 1283 grid for the MUSCL4 scheme
with and without models. The subgrid models are seen to add some small scales damping.
The kinetic energy spectrum is plotted att = 10 in Fig. 29 for the 1283 grid. This plot
confirms that SGS models provide an additional small scales damping. On the contrary, the

FIG. 28. Time history of enstrophy (Case 1, 1283 grid). MUSCL4 ———; MUSCL4+ Smagorinsky -----;
MUSCL4+ dynamic model -·-·-·-·-.
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FIG. 29. Kinetic energy spectrum att = 10 (Case 1, 1283 grid). MUSCL4 ———; MUSCL4+ Smagorinsky
-----; MUSCL4+ dynamic model -·-·-·-·-.

large scales become larger with the SGS models than without. Finally, as seen in Fig. 27,
the integral ofE(k) is larger with a model than without.

In fact, the mechanism is the same as for the Jameson scheme in Euler computation: the
additional dissipation provided by the SGS models damps the small scales and prevents the
energy transfer from low wave numbers to high ones from occurring. Energy is blocked at
small waves numbers where the damping is weak.

The pdfs of∂u/∂y at t = 10 are plotted in Fig. 30 for the WENO scheme with and
without a model on the 1283 grid. The results are quasi-identical for significant values of

FIG. 30. Probability density function of∂u/∂y at t = 10 (Case 1, 1283 grid). WENO ———; WENO+
Smagorinsky -----; WENO+ dynamic model· · ·.
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TABLE V

Taylor Micro-scale Values for All the Schemes with the Smagorinsky and the

Dynamic Eddy-Viscosity Models (Case 1,t = 10)

ENO+ WENO+ MENO+ Jameson+ MUSCL4+
Smagorinsky Smagorinsky Smagorinsky Smagorinsky Smagorinsky

7.01 6.31 5.51 6.51 5.91

ENO+ WENO+ MENO+ Jameson+ MUSCL4+
dynamic dynamic dynamic dynamic dynamic

6.91 6.11 5.31 6.41 5.71

the probability. However, for positive values of∂u/∂y, the wings are slightly smaller with
SGS model than without confirming the previous results. The same comments are valid for
the other schemes.

The Taylor micro-scale values are given for the 1283 mesh att = 10 in Table V.
Comparing with Table II, one notices that the Taylor micro-scale increases when SGS

models are added to the shock-capturing schemes.
The time history of theCgs is represented in Fig. 31 for the MUSCL4 scheme with and

without SGS models (1283 grid). The values of theCgs are slightly smaller with a model
than without. In fact, both overall levels ofεnumandεsgsdecrease, but the smoother turbulent
field favours the decrease ofεnum.

Since the numerical diffusion of the shock-capturing schemes is larger than the diffusion
of the SGS models, we can expect the constantCd of the dynamic eddy-viscosity model
to adapt itself to a weak value. The time history ofC1/2

d for all the schemes is shown in
Fig. 32 on the 643 grid. The asymptotic value ofC1/2

d is about 0.13 for each scheme used.
We observe that the constant decreases from about 0.18 when a centered scheme is used to
0.13 when a shock-capturing scheme is used. This means that the dynamic constant adapts

FIG. 31. Time evolution ofCgs (Case 1, 1283 grid). MUSCL4 ———; MUSCL4+ Smagorinsky -----;
MUSCL4+ dynamic model -·-·-·-·-.
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FIG. 32. Time history ofC1/2
d when the dynamic model is added to the following shock-capturing schemes

(Case 1, 643 grid). ENO ———; WENO -----; MENO -·-·-·-·-; Jameson· · ·; MUSCL4– – – – –.

itself to the dissipation of the schemes, in accordance with the conclusion of Najjar and
Tafti [31].

Moreover, since the Jameson scheme prevents the energy to reach the small scales, one
could expect the dynamic constant to be very weak. Unfortunately, this constant takes
nearly the same value whatever the scheme used. This means that the test filterG (see
Appendix B.2) used here is more sensitive to the large scales than expected. A study about
the influence of the test filter upon LES computations can be found in Sagaut and Grohens
[32]. A sharper expression ofG gives a lower value ofC1/2

d for all schemes but does allow
us to differentiate fully the Jameson scheme from the other ones. Nevertheless, one can
notice on the enlargement in Fig. 32 that the more diffusive schemes admit a lower value
of C1/2

d than the less diffusive ones.

4. CONCLUSION

The intrinsic dissipation of six shock-capturing Euler schemes has been investigated in
the case of freely decaying isotropic turbulence simulation with and without SGS models at
different rms Mach numbers, compression factors, and resolutions. The general conclusion
of this study is that neither the condition (C1) (εnum¿ εsgs) nor the condition (C2) (εnum

mimicsεsgs) is fulfilled by the selected schemes. The MILES approach is able to reproduce
few aspects of the fluid turbulence: the worm-like vortices are observed and evidence of
k−5/3 sub-ranges seems to exist if the resolution is sufficient.

However, a large part of the flow suffers from strong numerical damping. This damping
affects every structure defined on less than 5 grid points for all schemes, even in shock-free
cases. Moreover, pressure evolution is decorrelated from one of the vortices.

The ENO, WENO, MENO, and MUSCL4 schemes let some energy reach the cut-off
wavenumber and preserve the flow from energy accumulation at small scales: in this sense,
they behave like a (very dissipative) SGS model. For the Jameson scheme, the influence
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of the artificial dissipation is strong: if the set of constants frequently used for industrial
transonic computations is retained, a strong damping acting as a cut-off filter appears.
Moreover, if a lower artificial dissipation could generate turbulence fields like the other
schemes, the same dissipation would probably be insufficient for a LES of a transonic
industrial case.

A new measurement of the numerical damping has been introduced in terms of the
“generalized Smagorinsky constant” (Cgs). This quantity shows that numerical diffusion is
considerably larger than the SGS one. The constantCgs can be seen as a new tool to evaluate
the numerical schemes in a LES context.

Another important finding is that the addition of a SGS model to the shock-capturing
schemes tested in this study is unnecessary and inconvenient. The LES in the transonic
regime remains an open problem and improvement of shock-capturing strategies is nec-
essary. Higher-order accurate schemes can be employed, but their computational cost and
complexity may prevent their use for industrial applications. Another possibility may be
the development of a sensor able to distinguish a turbulent fluctuation from a shock.

A. APPENDIX: SHOCK-CAPTURING SCHEMES

A.1. Jameson Multi-stage Scheme

The numerical scheme developed by Jamesonet al. [33] to solve the Euler equations
applies a Runge–Kutta multi-stage (here a four-stage) time integration to the second-order
central discretization of the flux balance. Additional dissipation terms are, however, required
to capture discontinuities properly and to damp high-frequency oscillations, which are
permitted by the scheme.

The Euler equations in conservative form Eq. (1) are here integrated using the finite
volume method over a bounded control cellÄi, j,k of volumeVi, j,k [34]. After the addition
of the dissipative termsDi, j,k, the following discretized equation results,

d

dt
(Vi, j,kUi, j,k)+Qi, j,k − Di, j,k = 0, (18)

whereUi, j,k, attached to the cell center, is an approximation to the average value ofU over
Äi, j,k andQi, j,k is the vector of the net flux leaving and enteringÄi, j,k. The dissipation
terms are computed, analogous to the discretization of the convective fluxes, as

Di, j,k = di+ 1
2 , j,k
− di− 1

2 , j,k
+ di, j+ 1

2 ,k
− di, j− 1

2 ,k
+ di, j,k+ 1

2
− di, j,k− 1

2
. (19)

The dissipative fluxdi− 1
2 , j,k

in I -direction at the cell sidei − 1
2, j, k is made proportional

to the second- and fourth-order differences of the state vector multiplied by a scalar scaling
factorr and a weightε:

di− 1
2 , j,k
= ri− 1

2 , j,k
ε
(2)
i− 1

2 , j,k
(Ui, j,k − Ui−1, j,k)

− ri− 1
2 , j,k

ε
(4)
i− 1

2 , j,k
(Ui+1, j,k − 3Ui, j,k + 3Ui−1, j,k − Ui−2, j,k). (20)

The scaling factor is determined by the spectral radius of the Jacobian matrix for the inviscid
flux across the cell face and is formulated according to Jamesonet al. [33]. The directional
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version of the scaling factor proposed by Martinelli [35] has been tested and then abandoned
because it was too dissipative; instead, a matrix version as proposed by Swanson and Turkel
[36] has been successfully tested in [8] but not included here.

The second- and fourth-order coefficientsε(2) and ε(4) are used to adapt locally the
dissipative fluxes. They are defined as

ε
(2)
i− 1

2 , j,k
= κ(2)νi− 1

2 , j,k
and ε

(4)
i− 1

2 , j,k
= max

(
0, κ(4) − ε(2)

i− 1
2 , j,k

)
, (21)

whereκ(2) andκ(4) are two constants the typical values of which are between 1.0 and 2.0
for κ(2) and between 0.01 and 0.05 forκ(4). Here,κ(2) has been fixed equal to 1.0 and
κ(4) equal to 0.03. Simulations with other values have been done but will not be discussed
here. We just point out that, in the test Cases 1 and 5, results performed withκ(2)= 1.0 and
κ(4)= 0.01 are very close to the MUSCL4 ones.

The weightνi−1/2, j,k, usually referred to as a switch, is formed using the absolute value
of the normalized second-order derivative of the pressure field. For theI -direction, this
difference can be written as

9i, j,k =
∣∣∣∣ pi+1, j,k − 2pi, j,k + pi−1, j,k

pi+1, j,k + 2pi, j,k + pi−1, j,k

∣∣∣∣.
The switch is then given by

νi− 1
2 , j,k
= max(9i−1, j,k, 9i, j,k).

The fourth-order dissipation is automatically switched off in the vicinity of a discontinuity,
where the second-order dissipation is large.

A.2. Roe-TVD Schemes

A third-order total variation diminishing (TVD) version of the Roe scheme [37, 38]
applying the variable extrapolation MUSCL (monotone upstream-centered schemes for
conservation laws) approach [39] and a minmod limiter [40] on the characteristic variables
is used for the space discretization of the convective terms. The four-stage Runge–Kutta
scheme is then applied to the time integration of the resulting system of equations as
described in [34].

In the finite volume approximation, the Euler equations (1) are reduced to the simple
form

d

dt
(Vi, j,kUi, j,k)+Qi, j,k = 0. (22)

The net fluxQi, j,k is written in the same form as Eq. (19), where the Roe flux tensorqi+1/2, j,k

at the interfacei + 1
2, j, k is expressed as a function ofUL

i+1/2, j,k andUR
i+1/2, j,k, the left and

right cell sides extrapolated values of the state vectorUi+1/2, j,k. To simplify the notation,
the scheme is here described in 1D; the flux tensorqi+1/2, j,k is therefore replaced by the
vectorqi+1/2 (the same letterq is used in both 3D and 1D cases).qi+1/2 is the numerical
approximation of the convective flux vector(ρ, ρu2+ p, ρuh)t , h being the total enthalpy
defined byh= E + p/ρ. At the interfacei + 1

2, the numerical flux is defined as

qi+ 1
2
= 1

2

[
q
(
UL

i+ 1
2

)+ q
(
UR

i+ 1
2

)]− 1

2

∣∣ ¯̄A(UL
i+ 1

2
,UR

i+ 1
2

)∣∣(UL
i+ 1

2
− UR

i+ 1
2

)
, (23)
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where ¯̄A is the Roe matrix constructed from the Roe approximate Riemann solver using the
similarity transformation

| ¯̄A| = ¯̄T| ¯̄Λ| ¯̄T−1
. (24)

¯̄T and ¯̄T
−1

are the right and left eigenvector matrices of¯̄A while | ¯̄Λ| is the respective
diagonal matrix of absolute eigenvalues. The Roe matrix satisfies the following properties:

• ¯̄A(UL
i+1/2,U

R
i+1/2)[U

R
i+1/2−UL

i+1/2]= q(UR
i+1/2)− q(UL

i+1/2);

• ¯̄A(U,U) = ¯̄A(U) = ∂q
∂U

;

• ¯̄A has real eigenvalues with linearly independent eigenvectors.

The TVD conditions are here achieved by means of the minmod limiter. The leftUL
i+1/2

and rightUR
i+1/2 state vectors at the cell interfaces are defined as

UL
i+ 1

2
= Ui +

[
1+8

4
1Ulim

i+ 1
2
+ 1−8

4
1Ulim

i− 1
2

]
(25)

UR
i− 1

2
= Ui −

[
1+8

4
1Ulim

i− 1
2
+ 1−8

4
1Ulim

i+ 1
2

]
, (26)

where8= 1/3 results in a third-order scheme for the scalar convection equation. The limited
slopes1Ulim

i−1/2 and1Ulim
i+1/2 are calculated applying the minmod limiter to the variations

of the characteristic variables1W over the cell interfaces. The1W are computed from the
difference of the primitive variables over a cell side of unit normal surface vectorn as (here
in 3D)

1W1 = 1ρ − 1

c2
1p

1W2 = t1 ·1u

1W3 = t2 ·1u

1W4 = n ·1u+ 1

ρc
1p

1W5 = −n ·1u+ 1

ρc
1p,

wheren, t1, andt2 form an orthonormal basis. The symbolc denotes the speed of sound. In
1D,1W is reduced to the first, fourth, and fifth components of the 3D vector. The variations
1W are then limited as

1W lim
i− 1

2
= L(1W i− 1

2
,1W i+ 1

2
) (27)

1W lim
i+ 1

2
= L(1W i+ 1

2
,1W i− 1

2
). (28)

The minmod [40] version of the limiting functionL(a, b) is defined as

Lminmod(a, b) =


a if |a| < |b| andab> 0
b if |a| > |b| andab> 0
0 if ab< 0,

(29)

where the compression factorβ can be set from 1 to 4.
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The Roe scheme will be tested here using the lower and the upper compression factor:
the former version will be denoted as MUSCL1 and the second one as MUSCL4.

A.3. ENO, MENO, and WENO Schemes

Three essentially non-oscillatory (ENO) schemes are considered here. They are all based
on the flux reconstruction method described in [13]. In the one-dimensional case, for the
scalar conservation law,

∂u

∂t
+ ∂ f (u)

∂x
= 0, (30)

the second-order finite volume discretization of the convective term can be written as

∂ f (u)

∂x
= 1

1x

[
f

(
x + 1x

2

)
− f

(
x − 1x

2

)]
+ O(1x2), (31)

where1x is the mesh size andf (x+ 1x
2 ) the classical flux obtained at the cell interface by

an arithmetic mean. This discrete approximation is equivalent to the product of convolution
of the exact derivation operator with the classical box filter,

1

1x

[
f

(
x + 1x

2

)
− f

(
x − 1x

2

)]
≡ ∂

∂x

(
1

1x

∫ x+1x
2

x−1x
2

f (ξ) dξ

)
. (32)

The key idea of the ENO schemes is to apply tof a discrete deconvolution operator (denoted
Aq) to achieve higher order of accuracy,

∂ f (u)

∂x
= 1

1x

[
Aq

(
f

(
x + 1x

2

))
− Aq

(
f

(
x − 1x

2

))]
+ O(1xq) with q ≥ 2.

(33)

Considering the equivalent differential operator for the box filter, the (2m+ 1)-order inverse
operator reads

A2m+1 = 1+
p=m∑
p=1

1x2pa2p
∂2p

∂x2p
+ O(1x)2m+1.

The coefficientsa2p are constant (a2=−1/24, a4= 7/5760. . .). The polynomialA2m+1

can be discretized withr = 2m+ 1 points.
As given in [18], ther th-order accurate reconstruction can take the form

A2m+1( f j+ 1
2
) = f̂ j+ 1

2
=

r−1∑
l=0

αr
k,l f j−r+1+k+l = qr

k( f j+k−r+1, . . . , f j+k), (34)

where theαr
k,l are the reconstruction coefficients, andk is the stencil index selected among

ther candidate stencils. This stencil, calledSk, is defined as

Sk = (xj+k−r+1, xj+k−r+2, . . . , xj+k), k = 0, . . . , r − 1. (35)

To minimize numerical over- and undershoots, the reconstruction is performed with the
stencil which provides the most regular solution. Whenever the stencil used to evaluate
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f̂ i+1/2 is different from the stencil used to evaluatef̂ i−1/2 the order of accuracy decreases
to r − 1. This drawback is limited in the modified ENO (MENO) schemes proposed by
Shu [41], which selects automatically the most centered stencil in smooth regions.

Another way to increase the accuracy is the WENO approach [19] which consists in per-
forming linear combinations of ther possibler th-order ENO fluxes. This method increases
the theoretical order up to 2r − 1. The WENO fluxes are written

f̂ j+ 1
2
=

r−1∑
k=0

ωkqr
k( f j+k−r+1, . . . , f j+k), (36)

where the weightsωk adapt themselves to the relative smoothness of the flow on each
candidate stencil, in such a way that the stencils which contain a discontinuity are assigned
a nearly zero weight.

For the Euler equation, the implementation is performed by applying the deconvolution
to the characteristic variables. The fluxes at the collocation points are evaluated by means
of a Roe solver. Time integration is performed by means of a third-order TVD explicit
Runge–Kutta scheme, as recommended in [13].

Using ENO-type schemes, the only source of numerical diffusion is the truncation error
which is dependent on the upwinding of the stencils used to computef̂ i+1/2 and f̂ i−1/2.
This error denoted asε is analysed on a one-dimensional scalar transport equation. The
equivalent partial differential equation associated to a scalar 1D conservation law reads

∂φ

∂t
+ u

∂φ

∂x
= ε, (37)

whereφ is the advected scalar andu a uniform advective speed. We consider the pair
(kleft, kright) for the stencil index used to evaluate∂φ/∂x at the collocation points. The stencil
indexkleft is used to computêf i−1/2 andkright is used to computêf i+1/2. In Table VI, the two
leading terms of the truncation error and the behaviour induced by this error are provided
for r = 3. In this analysis,u is assumed to be positive.

The notationφ(i ) represents thei th derivative ofφ with respect tox. The extension of
this analysis to complex flows is not straightforward, and the only conclusion is that an
anti-diffusive behaviour isa priori possible and a dispersive behaviour is often expected.
Nevertheless, in the following computations, the mean behaviour is clearly diffusive.

TABLE VI

ENO Scheme Leading Truncation Error Terms for r = 3

(kleft, kright) ε: truncation error Behaviour of the scheme

(0, 0) 1/41x3φ(4) Anti-diffusive
(0, 1) 1/31x2φ(3)− 1/41x3φ(4) Dispersive+ diffusive
(0, 2) 1/61x2φ(3)− 1/61x3φ(4) Dispersive+ diffusive
(1, 0) −1/31x2φ(3)+ 5/121x3φ(4) Dispersive+ anti-diffusive
(1, 1) −1/121x3φ(4) Diffusive
(1, 2) −1/61x2φ(3) Dispersive
(2, 0) −1/61x2φ(3)+ 1/21x3φ(4) Dispersive+ anti-diffusive
(2, 1) 1/61x2φ(3) Dispersive
(2, 2) 1/121x3φ(4) Anti-diffusive
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B. APPENDIX: SUBGRID SCALE MODELS

The filtered Euler equations, expressed as a function of the filtered variables ¯ρ, p̄,
ũ= ρu/ρ̄, andT̃ , are solved in our computations with SGS models,

∂U
∂t
+ ∂(F+ Fsgs)

∂x
+ ∂(G+Gsgs)

∂y
+ ∂(H + Hsgs)

∂z
= K sgs, (38)

where the subgrid fluxesFsgs, Gsgs, andHsgsand the turbulent stress contribution in energy
equationK sgsare defined as

Fsgs=


0
ρ̄τ11

ρ̄τ12

ρ̄τ13

q̆1

 , Gsgs=


0
ρ̄τ21

ρ̄τ22

ρ̄τ23

q̆2

 , Hsgs=


0
ρ̄τ31

ρ̄τ32

ρ̄τ33

q̆3

 , K sgs=


0
0
0
0

−ũi ∂ j (ρ̄τi j )

 ,
(39)

where 1≤ i, j ≤ 3 and the summation convention applies to repeated indices. The symbol
τ denotes the turbulent subgrid-scale stress tensor based on the eddy-viscosityνsgs,

τi j = ũi u j − ũi ũ j . (40)

In the energy equation, the pressure-velocity and the pressure-dilatation subgrid terms
∂ j (puj − p̄ũ j )/(γ − 1) and(p∂ j u j − p̄∂ j ũ j ) are here modeled together as a subgrid-scale
heat fluxq̆ based on a turbulent Prandtl number Prt (here fixed to 0.5), as proposed by
Vreman in [42],

q̆j (T̃) = −
νsgs

Prt M2
0(γ − 1)

∂ j T̃ . (41)

Two well-known SGS models have been tested here: the Smagorinsky [26] and the dynamic
[43] eddy-viscosity models.

B.1. Smagorinsky SGS Model

The Smagorinsky eddy-viscosity model [26] formally models only the anisotropic part
of the subgrid-scale stressτi j ,

ρ̄τi j − δi j

3
ρ̄τkk ' mi j = −2ρ̄νsgs

[
Si j (ũ)− 1

3
Skk(ũ)δi j

]
, (42)

whereSi j (ũ)= 1
2(∂ j ũi + ∂i ũ j ) is the strain rate and the SGS eddy-viscosityνsgsis given by

νsgs= C2
s1

2|S(ũ)| with |S(ũ)|2 = 2Si j (ũ)Si j (ũ). (43)

In this work, the Smagorinsky constantCs has been chosen equal to 0.2 as proposed by
Deardorff [29] for isotropic turbulence and the filter width1 has been taken equal to the
cell size.
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B.2. Dynamic Eddy-Viscosity Model

The dynamic eddy-viscosity model of Germanoet al. [43] adopts the eddy-viscosity
formulation Eq. (43) where the square of the Smagorinsky constant is replaced by the
dynamic coefficientCd,

νsgs= Cd1
2|S(ũ)|. (44)

This coefficient is dynamically adjusted utilizing information already available at the small-
est resolved scales. LetF be the grid-filter corresponding to the filter width1,F(w)= w̄,
G a test-filter corresponding to the filter width 21, G(w)= ŵ, and finallyFG the com-
bination of these two filters associated with the filter widthκ1, FG(w)= ˆ̄w. In this case
and for Gaussian filters, the constantκ is equal to

√
5 [44]. Let moreoverτi j andTi j be

the subgrid-scale stress tensor respectively on theF-filter level and on theFG-filter level.
Then, the Germano identity yields

Li j = ˆ̄ρTi j − ̂̄ρτi j = (ρ̄ũi ũ j )̂ − ˆ̄ρǔi ǔj , (45)

whereǔi = ρ̂ui / ˆ̄ρ. The application of this identity to the eddy-viscosity subgrid tensors on
theF-filter levelmi j and on theFG-filter level Mi j gives

Li j = −2Cd Mi j , (46)

where

Mi j = ˆ̄ρ(κ1)2|S(ǔ)|Si j (ǔ)− [ρ̄12|S(ũ)|Si j (ũ)]ˆ . (47)

Following the least-squares approach of Lilly [45], the dynamic constantCd is extracted
from the six independent equations (46) as

Cd = −1

2

〈Li j Mi j 〉
〈Mi j Mi j 〉 , (48)

where the numerator and the denominator are averaged over the three spatial homogeneous
directions in order to prevent numerical instabilities. Classically,Cd is set to zero whenever
Eq. (48) returns negative values. However, as one could expect, in the 5 cases analysed here
Cd is never negative. Finally, the dynamic eddy-viscosity model has been implemented
using the grid of cell size1 as the globalF-filter and a coarser grid of cell size 21 as the
G-filter.

In Section 3, the indices on the field variables will be omitted for ease of notation.
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